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Ch. 3: Oscillators

Introduction

• The signal-generator or oscillator circuits studied in this lecture are collectively capable of providing signals

with frequencies in the range of hertz to hundreds of gigahertz. While some can be fabricated on chip, others

utilize discrete components.

• There are two distinctly different approaches for the generation of sinusoids, perhaps the most commonly used

of the standard waveforms. The first approach, employs a positive-feedback loop consisting of an amplifier

and an RC or LC frequency-selective network. While the frequency of the generated sine wave is determined

by the frequency-selective network, the amplitude is set using a nonlinear mechanism, implemented either with

a separate circuit or using the nonlinearities of the amplifying device itself. In spite of this, these circuits,

which generate sine waves utilizing resonance phenomena, are known as linear oscillators. The name clearly

distinguishes them from the circuits that generate sinusoids by way of the second approach. In these circuits, a

sine wave is obtained by appropriately shaping a triangular waveform.

• Circuits that generate square, triangular, pulse (etc.) waveforms, called nonlinear oscillators or function

generators, employ circuit building blocks known as multivibrators. There are three types of multivibrator:

the bistable , the astable, and the monostable.
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• The linear oscillator, which utilizes some form of resonance, and the nonlinear oscillator or function

generator, which employs a switching mechanism implemented with a multivibrator circuit.

3.1 Basic Principles of Sinusoidal Oscillators

3.1.1 The Oscillator Feedback Loop

The basic structure of a sinusoidal oscillator consists of an amplifier and a frequency-selective network

connected in a positive-feedback loop, such as that shown in block diagram form in Fig. 3.1.

Figure 3.1 The basic structure of a sinusoidal

oscillator. A positive-feedback loop is formed by an

amplifier and a frequency-selective network. In an

actual oscillator circuit, no input signal will be

present; here an input signal xs is employed to help

explain the principle of operation.
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Thus the gain-with-feedback is given by

𝐴𝑓(s) =
𝐴(𝑠)

1−𝐴(𝑆)𝛽(𝑆)

(3.1)

where we note the negative sign in the denominator. The loop gain L(s) is given by

L(s) ≡ A(s)β(s) (3.2)

3.1.2 The Oscillation Criterion

If at a specific frequency 𝑓0 the loop gain Aβ is equal to unity, it follows from Eq. (3.1) that 𝑨𝒇 will be

infinite. That is, at this frequency the circuit will have a finite output for zero input signal. Such a circuit is by

definition an oscillator. Thus the condition for the feedback loop of Fig. 3.1 to provide sinusoidal oscillations

of frequency 𝜔0 is

L(𝑗𝜔0) ≡ A(𝑗𝜔0)β(𝑗𝜔0) = 1 (3.3)

That is, at 𝝎𝟎 the phase of the loop gain should be zero and the magnitude of the loop gain should be unity.

This is known as the Barkhausen criterion. Note that for the circuit to oscillate at one frequency, the

oscillation criterion should be satisfied only at one frequency (i.e., 𝜔0); otherwise the resulting waveform will

not be a simple sinusoid. An intuitive feeling for the Barkhausen criterion can be gained by considering once

more the feedback loop of Fig. 3.1.
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For this loop to produce and sustain an output xo with no input applied (xs=0), the feedback signal

𝑥𝑓 = 𝛽𝑥0
should be sufficiently large that when multiplied by A it produces 𝑥0, that is, 𝐴𝑥𝑓 = 𝑥0
that is, 𝐴𝛽𝑥0 = 𝑥0 which results in Aβ = 1

An alternative approach to the study of oscillator circuits consists of examining the circuit poles, which are the

roots of the characteristic equation (1-L(s)=0). For the circuit to produce sustained oscillations at a

frequency 𝜔0 the characteristic equation has to have roots at 𝑠 = ±𝑗𝜔0. Thus 1−A(s)β(s) should have a factor of

the form 𝑠2 + 𝜔0
2.

3.1.3 Nonlinear Amplitude Control

The oscillation condition, the Barkhausen criterion guarantees sustained oscillations in a mathematical sense. It

is well known, however, that the parameters of any physical system cannot be maintained constant for any

length of time. In other words, suppose we work hard to make |Aβ| =1 at ω=𝜔0, and then the temperature

changes and |Aβ| becomes slightly less than unity. Obviously, oscillations will cease in this case. Conversely, if

|Aβ| exceeds unity, oscillations will grow in amplitude. We therefore need a mechanism for forcing |Aβ| to

remain equal to unity at the desired value of output amplitude. This task is accomplished by providing a

nonlinear circuit for gain control.
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Basically, the function of the gain-control mechanism is as follows: First, to ensure that oscillations will

start, one designs the circuit such that |Aβ| is slightly greater than unity. This corresponds to designing the

circuit so that the poles are in the right half of the s plane. Thus as the power supply is turned on, oscillations

will grow in amplitude. When the amplitude reaches the desired level, the nonlinear network comes into action

and causes the loop gain to be reduced to exactly unity. In other words, the poles will be “pulled back” to the

jω axis. This action will cause the circuit to sustain oscillations at this desired amplitude. If, for some reason,

the loop gain is reduced below unity, the amplitude of the sine wave will diminish. This will be detected by the

nonlinear network, which will cause the loop gain to increase to exactly unity.

One mechanism for amplitude control utilizes an element whose resistance can be controlled by the amplitude

of the output sinusoid. By placing this element in the feedback circuit so that its resistance determines the loop

gain, the circuit can be designed to ensure that the loop gain reaches unity at the desired output amplitude.

Diodes, or JFETs operated in the triode region, are commonly employed to implement the controlled-

resistance element.
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3.1.4 A Popular Limiter Circuit for Amplitude Control

The limiter circuit is shown in Fig. 3.2(a), and its transfer characteristic is depicted in Fig. 3.2(b).

Figure 3.2 (a) A popular limiter circuit. (b) Transfer characteristic of the limiter circuit; (c) When Rf is removed,

the limiter turns into a comparator with the characteristic shown.
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Limiter Circuit operation
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3.2 Op Amp–RC Oscillator Circuits

In this section we shall study some practical oscillator circuits utilizing op amps and RC networks. These

circuits are usually assembled on printed-circuit boards; their frequency of operation extends from very low

frequencies to at most 1 MHz.

3.2.1 The Wien-Bridge Oscillator

Figure 4.3 shows a Wien-bridge oscillator without the nonlinear gain-control network. The circuit consists of an

op amp connected in the noninverting configuration, with a closed-loop gain of 1+R2/R1. In the feedback path of

this positive-gain amplifier, an RC network is connected. The loop gain can be easily obtained by multiplying the

transfer function Va(s)/Vo(s) of the feedback network by the amplifier gain,

L(s)= 1 +
𝑅2

𝑅1

𝑍𝑝

𝑍𝑝+𝑍𝑠

=
1+  
𝑅2

𝑅1

1+𝑍𝑠𝑌𝑝
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Figure 3.3 A Wien-bridge oscillator 

without amplitude stabilization.
Figure 3.4 A Wien-bridge oscillator with a limiter 

used for amplitude control.
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Thus,

Substituting s=jω results in

𝐿 𝑆 =
1 +  

𝑅2
𝑅1

3 + 𝑠𝐶𝑅 +  1 𝑠𝐶𝑅

(3.4)

𝐿 𝑗𝜔 =
1 +  

𝑅2
𝑅1

3 + 𝑗(𝜔𝐶𝑅 −  1 𝜔𝐶𝑅)
(3.5)

The loop gain will be a real number (i.e., the phase will be zero) at one frequency given by

That is,

𝜔0CR = 
1

𝜔0𝐶𝑅

𝜔0=
1

𝐶𝑅
(3.6)

Oscillations will start at this frequency if the loop gain is at least unity. This can be achieved by selecting

𝑅2

𝑅1
=2 (3.7)
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3.2.2 The Phase-Shift Oscillator

The basic structure of the phase-shift oscillator is shown in Fig. 3.5. It consists of a negative-gain amplifier (–K)

with a three-section (third-order) RC ladder network in the feedback. The circuit will oscillate at the frequency

for which the phase shift of the RC network is 180°.

Only at this frequency will the total phase shift around the loop be 0° or 360°. Here we should note that the

reason for using a three-section RC network is that three is the minimum number of sections (i.e., lowest order)

that is capable of producing a 180° phase shift at a finite frequency.

Figure 3.5 A phase-shift oscillator.
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3.3 LC and Crystal Oscillators

Oscillators utilizing transistors (FETs or BJTs), with LC circuits or crystals as the frequency-selective feedback

elements, are used in the frequency range of 100 kHz to hundreds of gigahertz. They exhibit higher Q than the

RC types. However, LC oscillators are difficult to tune over wide ranges, and crystal oscillators operate at a

single frequency.

3.3.1 The Colpitts and Hartely Oscillators

Figure 4.6 shows two commonly used configurations of LC oscillators. They are known as the Colpitts

oscillator and the Hartley oscillator. Both utilize a parallel LC circuit connected between collector and base (or

between drain and gate if a FET is used) with a fraction of the tuned-circuit voltage fed to the emitter (the source

in a FET).

This feedback is achieved by way of a capacitive divider in the Colpitts oscillator and by way of an inductive

divider in the Hartley circuit. Observe that in both circuits the voltage Veb gives rise to a current Ic in the

direction shown, which in turn results in a positive voltage across the LC circuit. Thus, we do have a

positive-feedback loop.

If the frequency of operation is sufficiently low that we can neglect the transistor capacitances, the frequency of

oscillation will be determined by the resonance frequency of the parallel-tuned circuit (also known as a tank

circuit because it behaves as a reservoir for energy storage).
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Figure 3.6 Two commonly used configurations of LC-tuned oscillators: (a) Colpitts and (b) Hartley.
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Thus for the Colpitts oscillator we have

and for the Hartley oscillator we have

𝜔0 =  1 𝐿(
𝐶1𝐶2
𝐶1 + 𝐶2

𝜔0 =  1 𝐿1 + 𝐿2 𝐶

(3.8)

(3.9)

The ratio L1/L2 or C1/C2 determines the feedback factor and thus must be adjusted in conjunction with the

transistor gain to ensure that oscillations will start.

To determine the oscillation condition for the Colpitts oscillator in Fig. 3.7(a), we replace the transistor with its

equivalent circuit, as shown in Fig. 3.7(b). To simplify the analysis, we have neglected the transistor capacitance

Cμ (Cgd for a FET). Capacitance 𝐶𝜋 (Cgs for a FET), although not shown, can be considered to be a part of C2.

The input resistance 𝑟𝜋 (infinite for a FET) has also been neglected, assuming that at the frequency of oscillation

𝑟𝜋 ≫(1/ω𝐶2). Finally, as mentioned earlier, the resistance R includes 𝑟𝑜 of the transistor.

From Fig. (3.7)b, a node equation at the transistor collector (node C) yields
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Figure 3.7 (a)A Colpitts oscillator in which the emitter is grounded and the output is taken at the

collector. (b) Equivalent circuit of the Colpitts oscillator of (a). To simplify the analysis, Cμ and rπ are

neglected. We can consider Cπ to be part of C2, and we can include ro in R.
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Since 𝑉𝜋 ≠ 0 (oscillations have started), it can be eliminated, and the equation can be rearranged in the form

Substituting s = jω gives

For oscillations to start, both the real and imaginary parts must be zero. Equating the imaginary part to zero

gives the frequency of oscillation as

Equating the real part to zero

Of course, for oscillations to start, the loop gain must be made greater than unity, a condition that can be

EXERCISES: Show that for the Hartley oscillator of Fig. 3.6(b), the frequency of oscillation is given by Eq. (3.9)

and that for oscillations to start g
𝑚

R >𝐿1/𝐿2.
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3.3.2 Crystal Oscillators

A piezoelectric crystal, such as quartz, exhibits electromechanical-resonance characteristics that are very stable

(with time and temperature) and highly selective (having very high Q factors). The circuit symbol of a crystal is

shown in Fig. 3.8(a), and its equivalent-circuit model is given in Fig. 3.8(b). The resonance properties are

characterized by a large inductance L (as high as hundreds of henrys), a very small series capacitance Cs (as

small as 0.0005 pF), a series resistance r representing a Q factor 𝜔0L/r that can be as high as a few hundred

thousand, and a parallel capacitance Cp (a few picofarads). Capacitor Cp represents the electrostatic capacitance

between the two parallel plates of the crystal. Note that 𝐶𝑝 ≫ 𝐶𝑠. Since the Q factor is very high, we may neglect

the resistance r and express the crystal impedance as

which can be manipulated to the form

From the above equation and from Fig. 3.8(b), we see that the crystal has two resonance frequencies: a series

resonance at 𝜔𝑠
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Figure 3.8: A piezoelectric crystal. (a) Circuit symbol. (b) Equivalent

circuit. (c) Crystal reactance versus frequency [note that, neglecting the

small resistance r, Zcrystal= jX(ω)].

and a parallel resonance at ωp

Thus for s = jω we can write
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From 𝜔𝑠 , 𝜔𝑝 Eqs., we note that 𝜔𝑝>𝜔𝑠. However, since 𝐶𝑝 ≫ 𝐶𝑠, the two resonance frequencies are very close.

Expressing Z(jω)=jX(ω), the crystal reactance X(ω) will have the shape shown in Fig. 3.8(c). We observe that the

crystal reactance is inductive over the very narrow frequency band between 𝜔𝑠 and 𝜔𝑝. For a given crystal, this

frequency band is well defined. Thus we may use the crystal to replace the inductor of the Colpitts oscillator [Fig.

3.6(a)]. The resulting circuit will oscillate at the resonance frequency of the crystal inductance L with the series

equivalent of Cs and (Cp+C1C2/(C1+C2)). Since Cs is much smaller than the three other capacitances, it will be

dominant and

In addition to the basic Colpitts oscillator, a variety of configurations exist for crystal oscillators. Figure 3.9 shows

a popular configuration (called the Pierce oscillator) utilizing a CMOS inverter as an amplifier. Resistor Rf

determines a dc operating point in the high-gain region of the VTC of the CMOS inverter. Resistor R1 together

with capacitor C1 provides a low-pass filter that discourages the circuit from oscillating at a higher harmonic of

the crystal frequency. Note that this circuit also is based on the Colpitts configuration.
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Figure 3.9 A Pierce crystal oscillator

utilizing a CMOS inverter as an

amplifier.

The extremely stable resonance characteristics and the

very high Q factors of quartz crystals result in oscillators

with very accurate and stable frequencies. Crystals are

available with resonance frequencies in the range of a few

kilohertz to hundreds of megahertz. Unfortunately,

however, crystal oscillators, being mechanical resonators,

are fixed-frequency circuits.


